direct product, metabelian, soluble, monomial, A-group
Aliases: A42, PΩ+4(𝔽3), C24⋊C32, C22⋊A4⋊C3, (C22×A4)⋊C3, C22⋊1(C3×A4), SmallGroup(144,184)
Series: Derived ►Chief ►Lower central ►Upper central
C24 — A42 |
Generators and relations for A42
G = < a,b,c,d,e,f | a2=b2=c3=d2=e2=f3=1, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >
Character table of A42
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 6C | 6D | |
size | 1 | 3 | 3 | 9 | 4 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | linear of order 3 |
ρ10 | 3 | 3 | -1 | -1 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | -1 | 3 | -1 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | orthogonal lifted from A4 |
ρ12 | 3 | -1 | 3 | -1 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | ζ65 | 0 | 0 | ζ6 | complex lifted from C3×A4 |
ρ13 | 3 | 3 | -1 | -1 | -3-3√-3/2 | 0 | 0 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | complex lifted from C3×A4 |
ρ14 | 3 | 3 | -1 | -1 | -3+3√-3/2 | 0 | 0 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | complex lifted from C3×A4 |
ρ15 | 3 | -1 | 3 | -1 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | ζ6 | 0 | 0 | ζ65 | complex lifted from C3×A4 |
ρ16 | 9 | -3 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 4)(2 12)(3 7)(5 9)(6 10)(8 11)
(1 8)(2 5)(3 10)(4 11)(6 7)(9 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)
(1 11)(2 12)(3 10)(4 8)(5 9)(6 7)
(1 2 3)(4 12 7)(5 10 8)(6 11 9)
G:=sub<Sym(12)| (1,4)(2,12)(3,7)(5,9)(6,10)(8,11), (1,8)(2,5)(3,10)(4,11)(6,7)(9,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,11)(2,12)(3,10)(4,8)(5,9)(6,7), (1,2,3)(4,12,7)(5,10,8)(6,11,9)>;
G:=Group( (1,4)(2,12)(3,7)(5,9)(6,10)(8,11), (1,8)(2,5)(3,10)(4,11)(6,7)(9,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,11)(2,12)(3,10)(4,8)(5,9)(6,7), (1,2,3)(4,12,7)(5,10,8)(6,11,9) );
G=PermutationGroup([[(1,4),(2,12),(3,7),(5,9),(6,10),(8,11)], [(1,8),(2,5),(3,10),(4,11),(6,7),(9,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)], [(1,11),(2,12),(3,10),(4,8),(5,9),(6,7)], [(1,2,3),(4,12,7),(5,10,8),(6,11,9)]])
G:=TransitiveGroup(12,85);
(1 7)(2 15)(3 13)(4 8)(5 6)(9 10)(11 12)(14 16)
(1 5)(2 16)(3 11)(4 9)(6 7)(8 10)(12 13)(14 15)
(5 6 7)(8 9 10)(11 12 13)(14 15 16)
(1 2)(3 4)(5 16)(6 14)(7 15)(8 13)(9 11)(10 12)
(1 3)(2 4)(5 11)(6 12)(7 13)(8 15)(9 16)(10 14)
(1 4 3)(5 9 11)(6 10 12)(7 8 13)
G:=sub<Sym(16)| (1,7)(2,15)(3,13)(4,8)(5,6)(9,10)(11,12)(14,16), (1,5)(2,16)(3,11)(4,9)(6,7)(8,10)(12,13)(14,15), (5,6,7)(8,9,10)(11,12,13)(14,15,16), (1,2)(3,4)(5,16)(6,14)(7,15)(8,13)(9,11)(10,12), (1,3)(2,4)(5,11)(6,12)(7,13)(8,15)(9,16)(10,14), (1,4,3)(5,9,11)(6,10,12)(7,8,13)>;
G:=Group( (1,7)(2,15)(3,13)(4,8)(5,6)(9,10)(11,12)(14,16), (1,5)(2,16)(3,11)(4,9)(6,7)(8,10)(12,13)(14,15), (5,6,7)(8,9,10)(11,12,13)(14,15,16), (1,2)(3,4)(5,16)(6,14)(7,15)(8,13)(9,11)(10,12), (1,3)(2,4)(5,11)(6,12)(7,13)(8,15)(9,16)(10,14), (1,4,3)(5,9,11)(6,10,12)(7,8,13) );
G=PermutationGroup([[(1,7),(2,15),(3,13),(4,8),(5,6),(9,10),(11,12),(14,16)], [(1,5),(2,16),(3,11),(4,9),(6,7),(8,10),(12,13),(14,15)], [(5,6,7),(8,9,10),(11,12,13),(14,15,16)], [(1,2),(3,4),(5,16),(6,14),(7,15),(8,13),(9,11),(10,12)], [(1,3),(2,4),(5,11),(6,12),(7,13),(8,15),(9,16),(10,14)], [(1,4,3),(5,9,11),(6,10,12),(7,8,13)]])
G:=TransitiveGroup(16,414);
(1 17)(2 18)(4 7)(6 9)(10 15)(11 13)
(2 18)(3 16)(4 7)(5 8)(11 13)(12 14)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(4 7)(5 8)(6 9)(10 15)(11 13)(12 14)
(1 17)(2 18)(3 16)(4 7)(5 8)(6 9)
(1 10 9)(2 11 7)(3 12 8)(4 18 13)(5 16 14)(6 17 15)
G:=sub<Sym(18)| (1,17)(2,18)(4,7)(6,9)(10,15)(11,13), (2,18)(3,16)(4,7)(5,8)(11,13)(12,14), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (4,7)(5,8)(6,9)(10,15)(11,13)(12,14), (1,17)(2,18)(3,16)(4,7)(5,8)(6,9), (1,10,9)(2,11,7)(3,12,8)(4,18,13)(5,16,14)(6,17,15)>;
G:=Group( (1,17)(2,18)(4,7)(6,9)(10,15)(11,13), (2,18)(3,16)(4,7)(5,8)(11,13)(12,14), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (4,7)(5,8)(6,9)(10,15)(11,13)(12,14), (1,17)(2,18)(3,16)(4,7)(5,8)(6,9), (1,10,9)(2,11,7)(3,12,8)(4,18,13)(5,16,14)(6,17,15) );
G=PermutationGroup([[(1,17),(2,18),(4,7),(6,9),(10,15),(11,13)], [(2,18),(3,16),(4,7),(5,8),(11,13),(12,14)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(4,7),(5,8),(6,9),(10,15),(11,13),(12,14)], [(1,17),(2,18),(3,16),(4,7),(5,8),(6,9)], [(1,10,9),(2,11,7),(3,12,8),(4,18,13),(5,16,14),(6,17,15)]])
G:=TransitiveGroup(18,62);
(1 23)(2 24)(4 8)(5 9)(10 15)(12 14)(16 19)(17 20)
(2 24)(3 22)(5 9)(6 7)(10 15)(11 13)(17 20)(18 21)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 12)(2 10)(3 11)(4 16)(5 17)(6 18)(7 21)(8 19)(9 20)(13 22)(14 23)(15 24)
(1 8)(2 9)(3 7)(4 23)(5 24)(6 22)(10 20)(11 21)(12 19)(13 18)(14 16)(15 17)
(4 16 14)(5 17 15)(6 18 13)(7 21 11)(8 19 12)(9 20 10)
G:=sub<Sym(24)| (1,23)(2,24)(4,8)(5,9)(10,15)(12,14)(16,19)(17,20), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,12)(2,10)(3,11)(4,16)(5,17)(6,18)(7,21)(8,19)(9,20)(13,22)(14,23)(15,24), (1,8)(2,9)(3,7)(4,23)(5,24)(6,22)(10,20)(11,21)(12,19)(13,18)(14,16)(15,17), (4,16,14)(5,17,15)(6,18,13)(7,21,11)(8,19,12)(9,20,10)>;
G:=Group( (1,23)(2,24)(4,8)(5,9)(10,15)(12,14)(16,19)(17,20), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,12)(2,10)(3,11)(4,16)(5,17)(6,18)(7,21)(8,19)(9,20)(13,22)(14,23)(15,24), (1,8)(2,9)(3,7)(4,23)(5,24)(6,22)(10,20)(11,21)(12,19)(13,18)(14,16)(15,17), (4,16,14)(5,17,15)(6,18,13)(7,21,11)(8,19,12)(9,20,10) );
G=PermutationGroup([[(1,23),(2,24),(4,8),(5,9),(10,15),(12,14),(16,19),(17,20)], [(2,24),(3,22),(5,9),(6,7),(10,15),(11,13),(17,20),(18,21)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,12),(2,10),(3,11),(4,16),(5,17),(6,18),(7,21),(8,19),(9,20),(13,22),(14,23),(15,24)], [(1,8),(2,9),(3,7),(4,23),(5,24),(6,22),(10,20),(11,21),(12,19),(13,18),(14,16),(15,17)], [(4,16,14),(5,17,15),(6,18,13),(7,21,11),(8,19,12),(9,20,10)]])
G:=TransitiveGroup(24,212);
A42 is a maximal subgroup of
A4≀C2 PSO4+ (𝔽3)
A42 is a maximal quotient of Ω4+ (𝔽3) C3.A42 C24⋊He3 C24⋊3- 1+2 C24⋊23- 1+2
action | f(x) | Disc(f) |
---|---|---|
12T85 | x12-3x11-3x10+15x9-15x8-33x7+29x6+15x5-30x4-128x3-30x2+198x+48 | 244·322·78·3792 |
Matrix representation of A42 ►in GL6(𝔽7)
0 | 6 | 1 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
1 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 1 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 6 | 6 | 6 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 6 | 6 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 2 | 0 | 0 |
G:=sub<GL(6,GF(7))| [0,0,1,0,0,0,6,6,6,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,6,6,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,1,0,0,0,0,6,0,0,0,0,1,6,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,6,0,1,0,0,0,6,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,2,0] >;
A42 in GAP, Magma, Sage, TeX
A_4^2
% in TeX
G:=Group("A4^2");
// GroupNames label
G:=SmallGroup(144,184);
// by ID
G=gap.SmallGroup(144,184);
# by ID
G:=PCGroup([6,-3,-3,-2,2,-2,2,170,81,3244,1301]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^2=e^2=f^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations
Export
Subgroup lattice of A42 in TeX
Character table of A42 in TeX