Copied to
clipboard

G = A42order 144 = 24·32

Direct product of A4 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A42, PΩ+4(F3), C24:C32, C22:A4:C3, (C22xA4):C3, C22:1(C3xA4), SmallGroup(144,184)

Series: Derived Chief Lower central Upper central

C1C24 — A42
C1C22C24C22xA4 — A42
C24 — A42
C1

Generators and relations for A42
 G = < a,b,c,d,e,f | a2=b2=c3=d2=e2=f3=1, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 216 in 41 conjugacy classes, 11 normal (3 characteristic)
Quotients: C1, C3, C32, A4, C3xA4, A42
3C2
3C2
9C2
4C3
4C3
16C3
16C3
3C22
3C22
9C22
9C22
9C22
12C6
12C6
16C32
3C23
3C23
9C23
4A4
4A4
4C2xC6
4A4
4C2xC6
4A4
12A4
12A4
3C2xA4
3C2xA4
4C3xA4
4C3xA4

Character table of A42

 class 12A2B2C3A3B3C3D3E3F3G3H6A6B6C6D
 size 133944441616161612121212
ρ11111111111111111    trivial
ρ21111ζ32ζ32ζ3ζ311ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ311111ζ3ζ321ζ3ζ32ζ3ζ32ζ311ζ32    linear of order 3
ρ41111ζ3ζ32ζ3ζ32ζ3ζ3211ζ32ζ32ζ3ζ3    linear of order 3
ρ51111ζ32ζ3ζ32ζ3ζ32ζ311ζ3ζ3ζ32ζ32    linear of order 3
ρ61111ζ3211ζ3ζ3ζ32ζ32ζ31ζ3ζ321    linear of order 3
ρ711111ζ32ζ31ζ32ζ3ζ32ζ3ζ3211ζ3    linear of order 3
ρ81111ζ3ζ3ζ32ζ3211ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ91111ζ311ζ32ζ32ζ3ζ3ζ321ζ32ζ31    linear of order 3
ρ1033-1-1300300000-1-10    orthogonal lifted from A4
ρ113-13-103300000-100-1    orthogonal lifted from A4
ρ123-13-10-3+3-3/2-3-3-3/200000ζ6500ζ6    complex lifted from C3xA4
ρ1333-1-1-3-3-3/200-3+3-3/200000ζ65ζ60    complex lifted from C3xA4
ρ1433-1-1-3+3-3/200-3-3-3/200000ζ6ζ650    complex lifted from C3xA4
ρ153-13-10-3-3-3/2-3+3-3/200000ζ600ζ65    complex lifted from C3xA4
ρ169-3-31000000000000    orthogonal faithful

Permutation representations of A42
On 12 points - transitive group 12T85
Generators in S12
(1 4)(2 12)(3 7)(5 9)(6 10)(8 11)
(1 8)(2 5)(3 10)(4 11)(6 7)(9 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)
(1 11)(2 12)(3 10)(4 8)(5 9)(6 7)
(1 2 3)(4 12 7)(5 10 8)(6 11 9)

G:=sub<Sym(12)| (1,4)(2,12)(3,7)(5,9)(6,10)(8,11), (1,8)(2,5)(3,10)(4,11)(6,7)(9,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,11)(2,12)(3,10)(4,8)(5,9)(6,7), (1,2,3)(4,12,7)(5,10,8)(6,11,9)>;

G:=Group( (1,4)(2,12)(3,7)(5,9)(6,10)(8,11), (1,8)(2,5)(3,10)(4,11)(6,7)(9,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,11)(2,12)(3,10)(4,8)(5,9)(6,7), (1,2,3)(4,12,7)(5,10,8)(6,11,9) );

G=PermutationGroup([[(1,4),(2,12),(3,7),(5,9),(6,10),(8,11)], [(1,8),(2,5),(3,10),(4,11),(6,7),(9,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)], [(1,11),(2,12),(3,10),(4,8),(5,9),(6,7)], [(1,2,3),(4,12,7),(5,10,8),(6,11,9)]])

G:=TransitiveGroup(12,85);

On 16 points - transitive group 16T414
Generators in S16
(1 7)(2 15)(3 13)(4 8)(5 6)(9 10)(11 12)(14 16)
(1 5)(2 16)(3 11)(4 9)(6 7)(8 10)(12 13)(14 15)
(5 6 7)(8 9 10)(11 12 13)(14 15 16)
(1 2)(3 4)(5 16)(6 14)(7 15)(8 13)(9 11)(10 12)
(1 3)(2 4)(5 11)(6 12)(7 13)(8 15)(9 16)(10 14)
(1 4 3)(5 9 11)(6 10 12)(7 8 13)

G:=sub<Sym(16)| (1,7)(2,15)(3,13)(4,8)(5,6)(9,10)(11,12)(14,16), (1,5)(2,16)(3,11)(4,9)(6,7)(8,10)(12,13)(14,15), (5,6,7)(8,9,10)(11,12,13)(14,15,16), (1,2)(3,4)(5,16)(6,14)(7,15)(8,13)(9,11)(10,12), (1,3)(2,4)(5,11)(6,12)(7,13)(8,15)(9,16)(10,14), (1,4,3)(5,9,11)(6,10,12)(7,8,13)>;

G:=Group( (1,7)(2,15)(3,13)(4,8)(5,6)(9,10)(11,12)(14,16), (1,5)(2,16)(3,11)(4,9)(6,7)(8,10)(12,13)(14,15), (5,6,7)(8,9,10)(11,12,13)(14,15,16), (1,2)(3,4)(5,16)(6,14)(7,15)(8,13)(9,11)(10,12), (1,3)(2,4)(5,11)(6,12)(7,13)(8,15)(9,16)(10,14), (1,4,3)(5,9,11)(6,10,12)(7,8,13) );

G=PermutationGroup([[(1,7),(2,15),(3,13),(4,8),(5,6),(9,10),(11,12),(14,16)], [(1,5),(2,16),(3,11),(4,9),(6,7),(8,10),(12,13),(14,15)], [(5,6,7),(8,9,10),(11,12,13),(14,15,16)], [(1,2),(3,4),(5,16),(6,14),(7,15),(8,13),(9,11),(10,12)], [(1,3),(2,4),(5,11),(6,12),(7,13),(8,15),(9,16),(10,14)], [(1,4,3),(5,9,11),(6,10,12),(7,8,13)]])

G:=TransitiveGroup(16,414);

On 18 points - transitive group 18T62
Generators in S18
(1 17)(2 18)(4 7)(6 9)(10 15)(11 13)
(2 18)(3 16)(4 7)(5 8)(11 13)(12 14)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(4 7)(5 8)(6 9)(10 15)(11 13)(12 14)
(1 17)(2 18)(3 16)(4 7)(5 8)(6 9)
(1 10 9)(2 11 7)(3 12 8)(4 18 13)(5 16 14)(6 17 15)

G:=sub<Sym(18)| (1,17)(2,18)(4,7)(6,9)(10,15)(11,13), (2,18)(3,16)(4,7)(5,8)(11,13)(12,14), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (4,7)(5,8)(6,9)(10,15)(11,13)(12,14), (1,17)(2,18)(3,16)(4,7)(5,8)(6,9), (1,10,9)(2,11,7)(3,12,8)(4,18,13)(5,16,14)(6,17,15)>;

G:=Group( (1,17)(2,18)(4,7)(6,9)(10,15)(11,13), (2,18)(3,16)(4,7)(5,8)(11,13)(12,14), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (4,7)(5,8)(6,9)(10,15)(11,13)(12,14), (1,17)(2,18)(3,16)(4,7)(5,8)(6,9), (1,10,9)(2,11,7)(3,12,8)(4,18,13)(5,16,14)(6,17,15) );

G=PermutationGroup([[(1,17),(2,18),(4,7),(6,9),(10,15),(11,13)], [(2,18),(3,16),(4,7),(5,8),(11,13),(12,14)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(4,7),(5,8),(6,9),(10,15),(11,13),(12,14)], [(1,17),(2,18),(3,16),(4,7),(5,8),(6,9)], [(1,10,9),(2,11,7),(3,12,8),(4,18,13),(5,16,14),(6,17,15)]])

G:=TransitiveGroup(18,62);

On 24 points - transitive group 24T212
Generators in S24
(1 23)(2 24)(4 8)(5 9)(10 15)(12 14)(16 19)(17 20)
(2 24)(3 22)(5 9)(6 7)(10 15)(11 13)(17 20)(18 21)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 12)(2 10)(3 11)(4 16)(5 17)(6 18)(7 21)(8 19)(9 20)(13 22)(14 23)(15 24)
(1 8)(2 9)(3 7)(4 23)(5 24)(6 22)(10 20)(11 21)(12 19)(13 18)(14 16)(15 17)
(4 16 14)(5 17 15)(6 18 13)(7 21 11)(8 19 12)(9 20 10)

G:=sub<Sym(24)| (1,23)(2,24)(4,8)(5,9)(10,15)(12,14)(16,19)(17,20), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,12)(2,10)(3,11)(4,16)(5,17)(6,18)(7,21)(8,19)(9,20)(13,22)(14,23)(15,24), (1,8)(2,9)(3,7)(4,23)(5,24)(6,22)(10,20)(11,21)(12,19)(13,18)(14,16)(15,17), (4,16,14)(5,17,15)(6,18,13)(7,21,11)(8,19,12)(9,20,10)>;

G:=Group( (1,23)(2,24)(4,8)(5,9)(10,15)(12,14)(16,19)(17,20), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,12)(2,10)(3,11)(4,16)(5,17)(6,18)(7,21)(8,19)(9,20)(13,22)(14,23)(15,24), (1,8)(2,9)(3,7)(4,23)(5,24)(6,22)(10,20)(11,21)(12,19)(13,18)(14,16)(15,17), (4,16,14)(5,17,15)(6,18,13)(7,21,11)(8,19,12)(9,20,10) );

G=PermutationGroup([[(1,23),(2,24),(4,8),(5,9),(10,15),(12,14),(16,19),(17,20)], [(2,24),(3,22),(5,9),(6,7),(10,15),(11,13),(17,20),(18,21)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,12),(2,10),(3,11),(4,16),(5,17),(6,18),(7,21),(8,19),(9,20),(13,22),(14,23),(15,24)], [(1,8),(2,9),(3,7),(4,23),(5,24),(6,22),(10,20),(11,21),(12,19),(13,18),(14,16),(15,17)], [(4,16,14),(5,17,15),(6,18,13),(7,21,11),(8,19,12),(9,20,10)]])

G:=TransitiveGroup(24,212);

A42 is a maximal subgroup of   A4wrC2  PSO4+ (F3)
A42 is a maximal quotient of   Ω4+ (F3)  C3.A42  C24:He3  C24:3- 1+2  C24:23- 1+2

Polynomial with Galois group A42 over Q
actionf(x)Disc(f)
12T85x12-3x11-3x10+15x9-15x8-33x7+29x6+15x5-30x4-128x3-30x2+198x+48244·322·78·3792

Matrix representation of A42 in GL6(F7)

061000
060000
160000
000100
000010
000001
,
600000
601000
610000
000100
000010
000001
,
010000
001000
100000
000400
000040
000004
,
100000
010000
001000
000001
000666
000100
,
100000
010000
001000
000666
000001
000010
,
100000
010000
001000
000020
000002
000200

G:=sub<GL(6,GF(7))| [0,0,1,0,0,0,6,6,6,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,6,6,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,1,0,0,0,0,6,0,0,0,0,1,6,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,6,0,1,0,0,0,6,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,2,0] >;

A42 in GAP, Magma, Sage, TeX

A_4^2
% in TeX

G:=Group("A4^2");
// GroupNames label

G:=SmallGroup(144,184);
// by ID

G=gap.SmallGroup(144,184);
# by ID

G:=PCGroup([6,-3,-3,-2,2,-2,2,170,81,3244,1301]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^2=e^2=f^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Subgroup lattice of A42 in TeX
Character table of A42 in TeX

׿
x
:
Z
F
o
wr
Q
<